92 research outputs found

    Penerapan Sentiment Analysis Pada Hasil Evaluasi Dosen Dengan Metode Support Vector Machine

    Get PDF
    The quality of lectures can be determined by some feedbacks from students. From the feedbacks, we can give appreciations for those lectures who get good feedback from students, and evaluations for those who get bad feedback. The problem is classifying large size of feedbacks manually isn\u27t effective and took a lot of time. Therefore, we need a system that can classify feedbacks automatically. These feedbacks will be classified into positive, negative, and neutral, usually called as sentiment analysis. Sentiment analysis implementation can be done by several methods, one of them that has a good accuracy is Support Vector Machine (SVM). SVM performance in this research is measured with the level of accuracy. The number of accuracy indicate the success level of system. The conclusion of this research is factors that affects the accuracy. The factors are the range of each classes and number of unique words in the training document

    Prototyping a Chatbot for Student Supervision in a Pre-registration Process

    Get PDF
    Developing a chatbot becomes a challenging task when it is built from scratch and independent of any Software as a Service (SaaS). Inspired by the idea of freeing lecturers from the burden of answering the same questions repetitively during the pre-registration process, this research has succeeded in building a textbased chatbot system. Further, this research has proved that the combination of keyword spotting technique for the Language Understanding component, Finite-State Transducer (FST) for the Dialogue Management, rulebased keyword matching for language generation, and the system-in-the-loop paradigm for system validation can produce an efficient chatbot. The chatbot efficiency is high enough as its score on Concept Efficiency (CE) reaches 0.946. It shows that users do not need to repeat their utterances several times to be understood. The chatbot performance on recognizing new concepts introduced by users is also more than satisfactory which is presented by its Query Density (QD) score of 0.80

    Accredited qualifications for capacity development in disaster risk reduction and climate change adaptation

    Get PDF
    Increasingly practitioners and policy makers working across the globe are recognising the importance of bringing together disaster risk reduction and climate change adaptation. From studies across 15 Pacific island nations, a key barrier to improving national resilience to disaster risks and climate change impacts has been identified as a lack of capacity and expertise resulting from the absence of sustainable accredited and quality assured formal training programmes in the disaster risk reduction and climate change adaptation sectors. In the 2016 UNISDR Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030, it was raised that most of the training material available are not reviewed either through a peer-to-peer mechanism or by the scientific community and are, thus, not following quality assurance standards. In response to these identified barriers, this paper focuses on a call for accredited formal qualifications for capacity development identified in the 2015 United Nations landmark agreements in DRR and CCA and uses the Pacific Islands Region of where this is now being implemented with the launch of the Pacific Regional Federation of Resilience Professionals, for DRR and CCA. A key issue is providing an accreditation and quality assurance mechanism that is shared across boundaries. This paper argues that by using the United Nations landmark agreements of 2015, support for a regionally accredited capacity development that ensures all countries can produce, access and effectively use scientific information for disaster risk reduction and climate change adaptation. The newly launched Pacific Regional Federation of Resilience Professionals who work in disaster risk reduction and climate change adaptation may offer a model that can be used more widely

    Invasive micropapillary carcinoma of the breast overexpresses MUC4 and is associated with poor outcome to adjuvant trastuzumab in HER2-positive breast cancer

    Get PDF
    Invasive micropapillary carcinoma of the breast (IMPC) is a histological tumor variant that occurs with low frequency characterized by an inside-out formation of tumor clusters with a pseudopapillary arrangement. IMPC is an aggressive tumor with poor clinical outcome. In addition, this histological subtype usually expresses human epidermal growth factor receptor 2 (HER2) which also correlates with a more aggressive tumor. In this work we studied the clinical significance of IMPC in HER2-positive breast cancer patients treated with adjuvant trastuzumab. We also analyzed mucin 4 (MUC4) expression as a novel biomarker to identify IMPC.Fil: Mercogliano, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Inurrigarro, Gloria. Sanatorio Mater Dei Hermanas de María de Schoenstatt; ArgentinaFil: de Martino, Mara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Venturutti, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rivas, Martin Alfredo. Cornell University; Estados UnidosFil: Cordo Russo, Rosalia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Proietti Anastasi, Cecilia Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Fernandez, Elmer Andres. Universidad Católica de Córdoba; ArgentinaFil: Frahm, Isabel. Sanatorio Mater Dei Hermanas de María de Schoenstatt; ArgentinaFil: Barchuk, Sabrina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos ; ArgentinaFil: Allemand, Daniel H.. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos ; ArgentinaFil: Figurelli, Silvina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos ; ArgentinaFil: Gil Deza, Ernesto. Instituto Oncológico Henry Moore; ArgentinaFil: Ares, Sandra. Instituto Oncológico Henry Moore; ArgentinaFil: Gercovich, Felipe G.. Instituto Oncológico Henry Moore; ArgentinaFil: Cortese, Eduardo. Ministerio de Defensa. Fuerza Aérea Argentina. Hospital Aeronáutico Central ; ArgentinaFil: Amasino, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Guzmán, Pablo. Universidad de La Frontera; ChileFil: Roa, Juan C.. Universidad de La Frontera; ChileFil: Elizalde, Patricia Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Schillaci, Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Accredited qualifications for capacity development in disaster risk reduction and climate change adaptation

    Get PDF
    Increasingly practitioners and policy makers working across the globe are recognising the importance of bringing together disaster risk reduction and climate change adaptation. From studies across 15 Pacific island nations, a key barrier to improving national resilience to disaster risks and climate change impacts has been identified as a lack of capacity and expertise resulting from the absence of sustainable accredited and quality assured formal training programmes in the disaster risk reduction and climate change adaptation sectors. In the 2016 UNISDR Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030, it was raised that most of the training material available are not reviewed either through a peer-to-peer mechanism or by the scientific community and are, thus, not following quality assurance standards. In response to these identified barriers, this paper focuses on a call for accredited formal qualifications for capacity development identified in the 2015 United Nations landmark agreements in DRR and CCA and uses the Pacific Islands Region of where this is now being implemented with the launch of the Pacific Regional Federation of Resilience Professionals, for DRR and CCA. A key issue is providing an accreditation and quality assurance mechanism that is shared across boundaries. This paper argues that by using the United Nations landmark agreements of 2015, support for a regionally accredited capacity development that ensures all countries can produce, access and effectively use scientific information for disaster risk reduction and climate change adaptation. The newly launched Pacific Regional Federation of Resilience Professionals who work in disaster risk reduction and climate change adaptation may offer a model that can be used more widely

    Accredited qualifications for capacity development in disaster risk reduction and climate change adaptation

    Get PDF
    Increasingly practitioners and policy makers working across the globe are recognising the importance of bringing together disaster risk reduction and climate change adaptation. From studies across 15 Pacific island nations, a key barrier to improving national resilience to disaster risks and climate change impacts has been identified as a lack of capacity and expertise resulting from the absence of sustainable accredited and quality assured formal training programmes in the disaster risk reduction and climate change adaptation sectors. In the 2016 UNISDR Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015-2030, it was raised that most of the training material available are not reviewed either through a peer-to-peer mechanism or by the scientific community and are, thus, not following quality assurance standards. In response to these identified barriers, this paper focuses on a call for accredited formal qualifications for capacity development identified in the 2015 United Nations landmark agreements in DRR and CCA and uses the Pacific Islands Region of where this is now being implemented with the launch of the Pacific Regional Federation of Resilience Professionals, for DRR and CCA. A key issue is providing an accreditation and quality assurance mechanism that is shared across boundaries. This paper argues that by using the United Nations landmark agreements of 2015, support for a regionally accredited capacity development that ensures all countries can produce, access and effectively use scientific information for disaster risk reduction and climate change adaptation. The newly launched Pacific Regional Federation of Resilience Professionals who work in disaster risk reduction and climate change adaptation may offer a model that can be used more widely
    corecore